翻訳と辞書 |
Prékopa–Leindler inequality : ウィキペディア英語版 | Prékopa–Leindler inequality In mathematics, the Prékopa–Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn–Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians András Prékopa and László Leindler. ==Statement of the inequality== Let 0 < ''λ'' < 1 and let ''f'', ''g'', ''h'' : R''n'' → [0, +∞) be non-negative real-valued measurable functions defined on ''n''-dimensional Euclidean space R''n''. Suppose that these functions satisfy for all ''x'' and ''y'' in R''n''. Then :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Prékopa–Leindler inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|